Favorite This post was written with Zach Marston and Serg Masis from Syngenta. Syngenta and AWS collaborated to develop Cropwise AI, an innovative solution powered by Amazon Bedrock Agents, to accelerate their sales reps’ ability to place Syngenta seed products with growers across North America. Cropwise AI harnesses the power
Favorite Today, Amazon SageMaker is excited to announce updates to the inference optimization toolkit, providing new functionality and enhancements to help you optimize generative AI models even faster. These updates build on the capabilities introduced in the original launch of the inference optimization toolkit (to learn more, see Achieve up
Favorite Digital experience interruptions can harm customer satisfaction and business performance across industries. Application failures, slow load times, and service unavailability can lead to user frustration, decreased engagement, and revenue loss. The risk and impact of outages increase during peak usage periods, which vary by industry—from ecommerce sales events to
Favorite Amazon Q Business is a generative AI-powered assistant that can answer questions, provide summaries, generate content, and securely complete tasks based on data and information in your enterprise systems. Although generative AI is fueling transformative innovations, enterprises may still experience sharply divided data silos when it comes to enterprise
Favorite From a powerful new AI-flood forecasting initiative to help from AI in advancing quantum computers. View Original Source (blog.google/technology/ai/) Here.
Favorite Today, the Accounts Payable (AP) and Accounts Receivable (AR) analysts in Amazon Finance operations receive queries from customers through email, cases, internal tools, or phone. When a query arises, analysts must engage in a time-consuming process of reaching out to subject matter experts (SMEs) and go through multiple policy
Favorite Chronos-Bolt is the newest addition to AutoGluon-TimeSeries, delivering accurate zero-shot forecasting up to 250 times faster than the original Chronos models [1]. Time series forecasting plays a vital role in guiding key business decisions across industries such as retail, energy, finance, and healthcare. Traditionally, forecasting has relied on statistical
Favorite In Part 1 of this series, we introduced Amazon SageMaker Fast Model Loader, a new capability in Amazon SageMaker that significantly reduces the time required to deploy and scale large language models (LLMs) for inference. We discussed how this innovation addresses one of the major bottlenecks in LLM deployment: the
Favorite The generative AI landscape has been rapidly evolving, with large language models (LLMs) at the forefront of this transformation. These models have grown exponentially in size and complexity, with some now containing hundreds of billions of parameters and requiring hundreds of gigabytes of memory. As LLMs continue to expand,
Favorite Today at AWS re:Invent 2024, we are excited to announce the new Container Caching capability in Amazon SageMaker, which significantly reduces the time required to scale generative AI models for inference. This innovation allows you to scale your models faster, observing up to 56% reduction in latency when scaling