Favorite Organizations building and deploying AI applications, particularly those using large language models (LLMs) with Retrieval Augmented Generation (RAG) systems, face a significant challenge: how to evaluate AI outputs effectively throughout the application lifecycle. As these AI technologies become more sophisticated and widely adopted, maintaining consistent quality and performance becomes
Read More
Shared by AWS Machine Learning March 14, 2025
Favorite Computer use is a breakthrough capability from Anthropic that allows foundation models (FMs) to visually perceive and interpret digital interfaces. This capability enables Anthropic’s Claude models to identify what’s on a screen, understand the context of UI elements, and recognize actions that should be performed such as clicking buttons,
Read More
Shared by AWS Machine Learning March 14, 2025
Favorite DeepSeek-R1, developed by AI startup DeepSeek AI, is an advanced large language model (LLM) distinguished by its innovative, multi-stage training process. Instead of relying solely on traditional pre-training and fine-tuning, DeepSeek-R1 integrates reinforcement learning to achieve more refined outputs. The model employs a chain-of-thought (CoT) approach that systematically breaks
Read More
Shared by AWS Machine Learning March 13, 2025
Favorite This post is cowritten with Harrison Hunter is the CTO and co-founder of MaestroQA. MaestroQA augments call center operations by empowering the quality assurance (QA) process and customer feedback analysis to increase customer satisfaction and drive operational efficiencies. They assist with operations such as QA reporting, coaching, workflow automations,
Read More
Shared by AWS Machine Learning March 13, 2025
Favorite The Qwen 2.5 multilingual large language models (LLMs) are a collection of pre-trained and instruction tuned generative models in 0.5B, 1.5B, 3B, 7B, 14B, 32B, and 72B (text in/text out and code out). The Qwen 2.5 fine tuned text-only models are optimized for multilingual dialogue use cases and outperform both
Read More
Shared by AWS Machine Learning March 13, 2025
Favorite The integration of generative AI agents into business processes is poised to accelerate as organizations recognize the untapped potential of these technologies. Advancements in multimodal artificial intelligence (AI), where agents can understand and generate not just text but also images, audio, and video, will further broaden their applications. This
Read More
Shared by AWS Machine Learning March 13, 2025
Favorite Open foundation models (FMs) allow organizations to build customized AI applications by fine-tuning for their specific domains or tasks, while retaining control over costs and deployments. However, deployment can be a significant portion of the effort, often requiring 30% of project time because engineers must carefully optimize instance types
Read More
Shared by AWS Machine Learning March 13, 2025
Favorite This post was co-written with Vishal Singh, Data Engineering Leader at Data & Analytics team of GoDaddy Generative AI solutions have the potential to transform businesses by boosting productivity and improving customer experiences, and using large language models (LLMs) in these solutions has become increasingly popular. However, inference of
Read More
Shared by AWS Machine Learning March 13, 2025
Favorite Google shares policy recommendations in response to OSTP’s request for information for the U.S. AI Action Plan. View Original Source (blog.google/technology/ai/) Here.
Favorite Compelling AI-generated images start with well-crafted prompts. In this follow-up to our Amazon Nova Canvas Prompt Engineering Guide, we showcase a curated gallery of visuals generated by Nova Canvas—categorized by real-world use cases—from marketing and product visualization to concept art and design exploration. Each image is paired with the
Read More
Shared by AWS Machine Learning March 12, 2025