Favorite Posted by Jinsung Yoon and Sercan O. Arik, Research Scientists, Google Research, Cloud AI Team Analysis of Electronic Health Records (EHR) has a tremendous potential for enhancing patient care, quantitatively measuring performance of clinical practices, and facilitating clinical research. Statistical estimation and machine learning (ML) models trained on EHR
Read More
Shared by Google AI Technology December 21, 2022
Favorite As I’m closing out my first full year as executive director of the Open Source Initiative, I’m amazed by what our small team has accomplished. I’m proud to end the year with a solid 20% growth in revenue from sponsors and an even more impressive increase of the total
Read More
Shared by voicesofopensource December 21, 2022
Favorite The last few years have seen a tremendous paradigm shift in how institutional asset managers source and integrate multiple data sources into their investment process. With frequent shifts in risk correlations, unexpected sources of volatility, and increasing competition from passive strategies, asset managers are employing a broader set of
Read More
Shared by AWS Machine Learning December 20, 2022
Favorite The IMDb and Box Office Mojo Movies/TV/OTT licensable data package provides a wide range of entertainment metadata, including over 1 billion user ratings; credits for more than 11 million cast and crew members; 9 million movie, TV, and entertainment titles; and global box office reporting data from more than
Read More
Shared by AWS Machine Learning December 20, 2022
Favorite This three-part series demonstrates how to use graph neural networks (GNNs) and Amazon Neptune to generate movie recommendations using the IMDb and Box Office Mojo Movies/TV/OTT licensable data package, which provides a wide range of entertainment metadata, including over 1 billion user ratings; credits for more than 11 million
Read More
Shared by AWS Machine Learning December 20, 2022
Favorite Posted by Pritish Kamath and Pasin Manurangsi, Research Scientists, Google Research Differential privacy (DP) is an approach that enables data analytics and machine learning (ML) with a mathematical guarantee on the privacy of user data. DP quantifies the “privacy cost” of an algorithm, i.e., the level of guarantee that
Read More
Shared by Google AI Technology December 20, 2022
Favorite Deploying high-quality, trained machine learning (ML) models to perform either batch or real-time inference is a critical piece of bringing value to customers. However, the ML experimentation process can be tedious—there are a lot of approaches requiring a significant amount of time to implement. That’s why pre-trained ML models
Read More
Shared by AWS Machine Learning December 19, 2022
Favorite Today we announce the general availability of Renate, an open-source Python library for automatic model retraining. The library provides continual learning algorithms able to incrementally train a neural network as more data becomes available. By open-sourcing Renate, we would like to create a venue where practitioners working on real-world
Read More
Shared by AWS Machine Learning December 19, 2022
Favorite Foundation models are large deep learning models trained on a vast quantity of data at scale. They can be further fine-tuned to perform a variety of downstream tasks and form the core backbone of enabling several AI applications. The most prominent category is large-language models (LLM), including auto-regressive models such
Read More
Shared by AWS Machine Learning December 17, 2022
Favorite Developing and training successful machine learning (ML) fraud models requires access to large amounts of high-quality data. Sourcing this data is challenging because available datasets are sometimes not large enough or sufficiently unbiased to usefully train the ML model and may require significant cost and time. Regulation and privacy
Read More
Shared by AWS Machine Learning December 16, 2022