Favorite Today AWS announced new ways for you to easily add machine learning (ML) predictions to applications and business intelligence (BI) dashboards using relational data in your Amazon Aurora database and unstructured data in Amazon S3, by simply adding a few statements to your SQL (structured query language) queries and
Read More
Shared by AWS Machine Learning November 26, 2019
Favorite Organizations in all industries have a large number of physical documents. It can be difficult to extract text from a scanned document when it contains formats such as tables, forms, paragraphs, and check boxes. Organizations have been addressing these problems with Optical Character Recognition (OCR) technology, but it requires
Read More
Shared by AWS Machine Learning November 26, 2019
Favorite Machine learning (ML) is routinely used in every sector to make predictions. But beyond simple predictions, making decisions is more complicated because non-optimal short-term decisions are sometimes preferred or even necessary to enable long-term, strategic goals. Optimizing policies to make sequential decisions toward a long-term objective can be learned
Read More
Shared by AWS Machine Learning November 26, 2019
Favorite Businesses are increasingly developing per-user machine learning (ML) models instead of cohort or segment-based models. They train anywhere from hundreds to hundreds of thousands of custom models based on individual user data. For example, a music streaming service trains custom models based on each listener’s music history to personalize
Read More
Shared by AWS Machine Learning November 26, 2019
Favorite Today, Amazon Web Services (AWS) announced Amazon Rekognition Custom Labels, a new feature of Amazon Rekognition that enables customers to build their own specialized machine learning (ML) based image analysis capabilities to detect unique objects and scenes integral to their specific use case. For example, customers using Amazon Rekognition
Read More
Shared by AWS Machine Learning November 25, 2019
Favorite All voices are unique, yet speakers tend to adjust their delivery, or speaking style, according to their context and audience. Before Amazon Polly used Neural Text-to-Speech technology (NTTS) to build voices, TTS (Standard Text-to-Speech) voices couldn’t change their speech patterns to match any particular speaking style. When Amazon Polly
Read More
Shared by AWS Machine Learning November 25, 2019
Favorite We recently announced that Amazon Transcribe now supports transcription for audio and video for 7 additional languages including Gulf Arabic, Swiss German, Hebrew, Japanese, Malay, Telugu, and Turkish languages. Using Amazon Transcribe, customers can now take advantage of 31 supported languages for transcription use cases such as improving customer service, captioning and subtitling,
Read More
Shared by AWS Machine Learning November 25, 2019
Favorite This is a guest post from Matt Fielder and Jordan Rosenblum at iHeartRadio. In their own words, “iHeartRadio is a streaming audio service that reaches tens of millions of users every month and registers many tens of thousands more every day.” Personalization is an important part of the user
Read More
Shared by AWS Machine Learning November 21, 2019
Favorite To have an effective conversation, it is important to understand the sentiment and respond appropriately. In a customer service call, a simple acknowledgment when talking to an unhappy customer might be helpful, such as, “Sorry to hear you are having trouble.” Understanding sentiment is also useful in determining when
Read More
Shared by AWS Machine Learning November 21, 2019
Favorite Amazon SageMaker Ground Truth helps you build highly accurate training datasets for machine learning. It can reduce your labeling costs by up to 70% using automatic labeling. This blog post explains the Amazon SageMaker Ground Truth chaining feature with a few examples and its potential in labeling your datasets.
Read More
Shared by AWS Machine Learning November 20, 2019