Favorite Amazon SageMaker Studio is a web-based integrated development environment (IDE) for machine learning (ML) that lets you build, train, debug, deploy, and monitor your ML models. Each onboarded user in Studio has their own dedicated set of resources, such as compute instances, a home directory on an Amazon Elastic
Favorite There have been many recent advancements in the NLP domain. Pre-trained models and fully managed NLP services have democratised access and adoption of NLP. Amazon Comprehend is a fully managed service that can perform NLP tasks like custom entity recognition, topic modelling, sentiment analysis and more to extract insights from data
Favorite Automated defect detection using computer vision helps improve quality and lower the cost of inspection. Defect detection involves identifying the presence of a defect, classifying types of defects, and identifying where the defects are located. Many manufacturing processes require detection at a low latency, with limited compute resources, and
Favorite Customer satisfaction is a potent metric that directly influences the profitability of an organization. With rapid technological advances in the past decade or so, it’s even more important to elevate customer focus in the following ways: Making your organization accessible to your customers across multiple modalities, including voice, text,
Favorite Posted by Ehsan Amid, Research Scientist, and Rohan Anil, Principal Engineer, Google Research, Brain Team While model design and training data are key ingredients in a deep neural network’s (DNN’s) success, less-often discussed is the specific optimization method used for updating the model parameters (weights). Training DNNs involves minimizing
Favorite A well-designed Open Source Program Office is the center of competency for an organization’s Open Source operations and structure. The post What is an Open Source Program Office and why you should have one first appeared on Voices of Open Source. Click Here to View Original Source (opensource.org)
Favorite As enterprises move from running ad hoc machine learning (ML) models to using AI/ML to transform their business at scale, the adoption of ML Operations (MLOps) becomes inevitable. As shown in the following figure, the ML lifecycle begins with framing a business problem as an ML use case followed
Favorite Posted by Tuan Anh Nguyen, Staff Software Engineer, Google Assistant, and Sourish Chaudhuri, Staff Software Engineer, Google Research In natural conversations, we don’t say people’s names every time we speak to each other. Instead, we rely on contextual signaling mechanisms to initiate conversations, and eye contact is often all
Favorite Logistics and transportation companies track ETA (estimated time of arrival), which is a key metric for their business. Their downstream supply chain activities are planned based on this metric. However, delays often occur, and the ETA might differ from the product’s or shipment’s actual time of arrival (ATA), for
Favorite In the end, it came down to 213 thousandths of a second! That was the difference between the two best times in the finale of the first AWS AWS DeepRacer Student Wildcard event hosted in Ottawa, Canada this May. I watched in awe as 13 students competed in a