Favorite Amazon Comprehend is a natural language processing (NLP) service that uses machine learning (ML) to discover insights from text. Amazon Comprehend provides customized features, custom entity recognition, custom classification, and pre-trained APIs such as key phrase extraction, sentiment analysis, entity recognition, and more so you can easily integrate NLP
Read More
Shared by AWS Machine Learning December 12, 2022
Favorite Amazon Lookout for Vision provides a machine learning (ML)-based anomaly detection service to identify normal images (i.e., images of objects without defects) vs anomalous images (i.e., images of objects with defects), types of anomalies (e.g., missing piece), and the location of these anomalies. Therefore, Lookout for Vision is popular
Read More
Shared by AWS Machine Learning December 12, 2022
Favorite What’s the point of having a KM Policy? Here are 10 arguments in favour. There comes a time when a KM strategy has done its job, and that’s when you need a KM policy. Your Knowledge Management strategy is a strategy for change – a strategy for introducing the
Read More
Shared by Nick Milton December 12, 2022
Favorite Amazon SageMaker Autopilot automatically builds, trains, and tunes the best machine learning (ML) models based on your data, while allowing you to maintain full control and visibility. Autopilot can also deploy trained models to real-time inference endpoints automatically. If you have workloads with spiky or unpredictable traffic patterns that
Read More
Shared by AWS Machine Learning December 8, 2022
Favorite In this post, we show how to train, deploy, and predict natural disaster damage with Amazon SageMaker with geospatial capabilities. We use the new SageMaker geospatial capabilities to generate new inference data to test the model. Many government and humanitarian organizations need quick and accurate situational awareness when a
Read More
Shared by AWS Machine Learning December 8, 2022
Favorite Across all industries, machine learning (ML) models are getting deeper, workflows are getting more complex, and workloads are operating at larger scales. Significant effort and resources are put into making these models more accurate since this investment directly results in better products and experiences. On the other hand, making
Read More
Shared by AWS Machine Learning December 8, 2022
Favorite Data preparation is a principal component of machine learning (ML) pipelines. In fact, it is estimated that data professionals spend about 80 percent of their time on data preparation. In this intensive competitive market, teams want to analyze data and extract more meaningful insights quickly. Customers are adopting more
Read More
Shared by AWS Machine Learning December 8, 2022
Favorite Posted by Alexis Morvan and Trond Andersen, Research Scientists, Google Quantum AI When quantum computers were first proposed, they were hoped to be a way to better understand the quantum world. With a so-called “quantum simulator,” one could engineer a quantum computer to investigate how various quantum phenomena arise,
Read More
Shared by Google AI Technology December 8, 2022
Favorite The success of any machine learning (ML) pipeline depends not just on the quality of model used, but also the ability to train and iterate upon this model. One of the key ways to improve an ML model is by choosing better tunable parameters, known as hyperparameters. This is
Read More
Shared by AWS Machine Learning December 7, 2022
Favorite In previous blog post, we described an end-to-end identity verification solution in a single AWS Region. The solution uses the Amazon Rekognition APIs DetectFaces for face detection and CompareFaces for face comparison. We think of those APIs as stateless APIs because they don’t depend on an Amazon Rekognition face
Read More
Shared by AWS Machine Learning December 7, 2022