Favorite Over guacamole and corn chips at a party, a friend mentions that her favorite phone game uses augmented reality. Another friend points her phone at the host and shouts, “Watch out—a t-rex is sneaking up behind you.” Eager to join the conversation, you blurt, “My blender has an augmented
Favorite A continuous integration and continuous delivery (CI/CD) pipeline helps you automate steps in your machine learning (ML) applications such as data ingestion, data preparation, feature engineering, modeling training, and model deployment. A pipeline across multiple AWS accounts improves security, agility, and resilience because an AWS account provides a natural
Favorite Social media platforms provide a channel of communication for consumers to talk about various products, including the medications they take. For pharmaceutical companies, monitoring and effectively tracking product performance provides customer feedback about the product, which is vital to maintaining and improving patient safety. However, when an unexpected medical
Favorite According to a recent study, defective products cost industries over $2 billion from 2012–2017. Defect detection within manufacturing is an important business use case, especially in high-value product industries like the automotive industry. This allows for early diagnosis of anomalies to improve production line efficacy and product quality, and
Favorite The two questions in this little conversation are evidence of a broken KM culture or system. It’s the sort of conversation most of us have had at some time on our lives. In this conversation we can see evidence of a missed opportunity to share knowledge (“I could have
Favorite You may have tables in your Amazon Redshift data warehouse or in your Amazon Simple Storage Service (Amazon S3) data lake full of records containing customer case notes, product reviews, and social media messages, in many languages. Your task is to identify the products that people are talking about,
Favorite Starting today, we’re releasing new tools for multimodal financial analysis within Amazon SageMaker JumpStart. SageMaker JumpStart helps you quickly and easily get started with machine learning (ML) and provides a set of solutions for the most common use cases that can be trained and deployed readily with just a
Favorite Starting today, we’re releasing new tools for multimodal financial analysis within Amazon SageMaker JumpStart. SageMaker JumpStart helps you quickly and easily get started with machine learning (ML). It provides a set of solutions for the most common use cases that can be trained and deployed readily with just a
Favorite Amazon SageMaker projects are AWS Service Catalog provisioned products that enable you to easily create end-to-end machine learning (ML) solutions. SageMaker projects give organizations the ability to use templates that bootstrap ML solutions for your users to speed up the start time for ML development. You can now use
Favorite More customers are finding the need to build larger, scalable, and more cost-effective machine learning (ML) inference pipelines in the cloud. Outside of these base prerequisites, the requirements of ML inference pipelines in production vary based on the business use case. A typical inference architecture for applications like recommendation